Ecological With No Performance Compromise

Eco-Mechanical Index for Sustainable Concrete Structural Design

Davide Zampini

Head of CEMEX Research Group AG - Centre for Technology & Innovation, Switzerland

Director – Product Development & Construction Trends

THE STORY

CONTEXT

- Sustainability Common Understanding
- Concrete Sustainability Until Today
- Novel Concept for Sustainable Construction

■ ECO-MECHANICAL INDEX (emiTM)

- General Idea
- Details of Concept

emi™ APPLIED

- Product Selection Criterion for Structural Engineers
- Structural Column Design
- A Materials Design Tool

CONCLUDING REMARKS

THE STORY

CONTEXT

- Sustainability Common Understanding
- Concrete Sustainability Until Today
- Novel Concept for Sustainable Construction

■ ECO-MECHANICAL INDEX (emi[™])

- General Idea

- Details of Concept

∎ emi[™] APPLIED

- Product Selection Criterion for Structural Engineers
- Structural Column Design
- A Materials Design Tool

- CONCLUDING REMARKS

A COMMON UNDERSTANDING OF SUSTAINABILITY

Patterns of Behavior, Attitudes, and Values

SUSTAINABILITY goes beyond its economical and ecological dimensions, it is about responsibly designing societies with improved human well-being and social equity.

A COMMON UNDERSTANDING OF SUSTAINABILITY

Definition

Sustainable takes its meaning from

"sustainable agriculture" or "the ability to produce food indefinitely, without causing irreversible damage to ecosystem health."

APPLIED (CONCRETE) SUSTAINABILITY

Until Now...

the words "**green**" and "**sustainable**" are often used interchangeably, and sustainable has a more precise meaning that is often obscured, distorted, and diluted by the commercialization and marketing of the green "movement."

APPLIED (CONCRETE) SUSTAINABILITY

Green 🔿 CO2 Footprint

Current Sustainability practices are driven by the

Green "movement," and emphasis has been

on

CO₂ footprint.

APPLIED (CONCRETE) SUSTAINABILITY

Until Now Green 🔿 CO2 Footprint

Are these sufficient criterion for designing

sustainable structures?

CONCRETE SUSTAINABILITY - ADDITIONAL CONSIDERATIONS

Performance *cannot be*

compromised

at the

expense of "Green"

Source : Steve Howard-Ted talks - 2013

NOVEL CONCEPT IN SUSTAINABLE DESIGN & CONSTRUCTION Motivation driving the development of The "eco-mechanical index" (emi™)

Adopting a parameter such as the emi[™], structural engineers can design sustainable structures fulfilling performance requirements (as well as ecological) essential for sound engineering practices

THE STORY

CONTEXT

- Sustainability -- Common Understanding
- Concrete Sustainability Until Today
- Novel Concept for Sustainable Construction

■ ECO-MECHANICAL INDEX (emiTM)

- General Idea
- Details of Concept

emiTM APPLIED

- Product Selection Criterion for Structural Engineer - Structural Column Design
- A Materials Design Tool

CONCLUDING REMARKS

General Concept

EMI

g (EI)

f (MI)

- MI = mechanical index
- EI = ecological index
- f() = function used to conbine the MI in the calculation of the EMI
- g() = function used to conbine the EI in the calculation of the EMI

Details: Considerations and Breadth

Mechanical characteristics considered for each parameter

Ecological characteristics considerd for each parameter

 m^3 kgCO . G/ 2 water EI =3 concrete 3 3 m m m concrete concrete **CO2** footprint Water consumption Energy (CO_2) consumption (EN) (H_2O)

Details: Considerations and Breadth

$$MI = \prod_{i=1}^{n} MP_{i} \cdot \prod_{j=1}^{m} MDCP_{j}$$
$$EI = \prod_{k=1}^{p} EP_{k} \cdot \prod_{l=1}^{r} EDCP_{l}$$

where, $MP_i = i^{\text{th}}$ mechanical parameter; $EP_k = k^{\text{th}}$ ecological parameter; $MDCP_j = j^{\text{th}}$ weighting coefficient of mechanical parameter; $EDCP_l = l^{\text{th}}$ weighting coefficient of ecological parameter; n, m, p,r = number of MP, MDCP, EP, and EDCP, respectively.

Details: Considerations and Breadth

Final Formulation of

the proposed EMI

EMI

 $= \underbrace{\log_{a}}_{a} \left(\begin{array}{cc} C & T \\ G & F & G \end{array} \right)$ log $\frac{kgCO}{m^3}$ $\frac{G}{m^3}$ m water 3 m m concre<u>te</u> concrete concrete

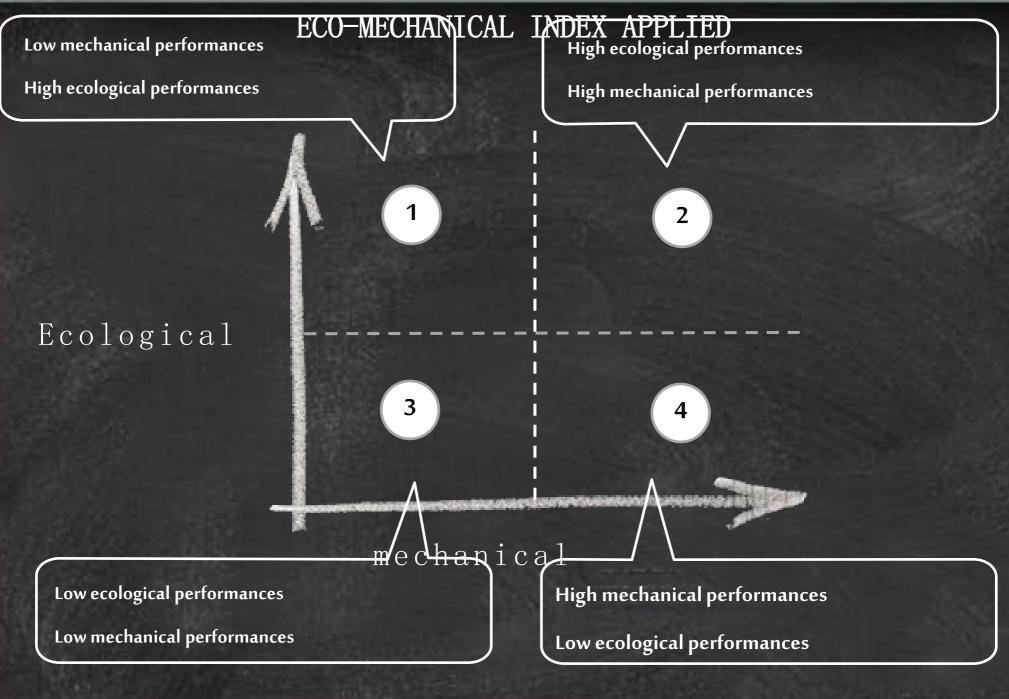
THE STORY

- CONTEXT

- Sustainability Common Understanding
- Concrete Sustainability Until Today
- Novel Concept for Sustainable Construction

■ ECO-MECHANICAL INDEX (emi[™])

General Idea


letails of Concept

emi™ APPLIED

- Product Selection Criterion for Structural Engineers
- Structural Column Design
- A Materials Design Tool

CONCLUDING REMARKS

ECO-MECHANICAL INDEX APPLIED

ECO-MECHANICAL INDEX APPLIED

Biggest RMix Plant in Bogotá

Ecological

4

mechanical

ECO-MECHANICAL - Example 1

Equivalent strength

- High Durability (crack resistant)
- No need of water for curing

Ecological

mechanical

Mechanical

 \rightarrow

Conventional concrete

Hidratium

ECO-MECHANICAL - Example 2

Ecological

- Equivalent strength
- Improved ThermalInsulation

Mechanical

Self Compacting properties

mechanical

Ecological

Conventional concrete

Insularis A

Insularis B

 \rightarrow

ECO-MECHANICAL - Example 3

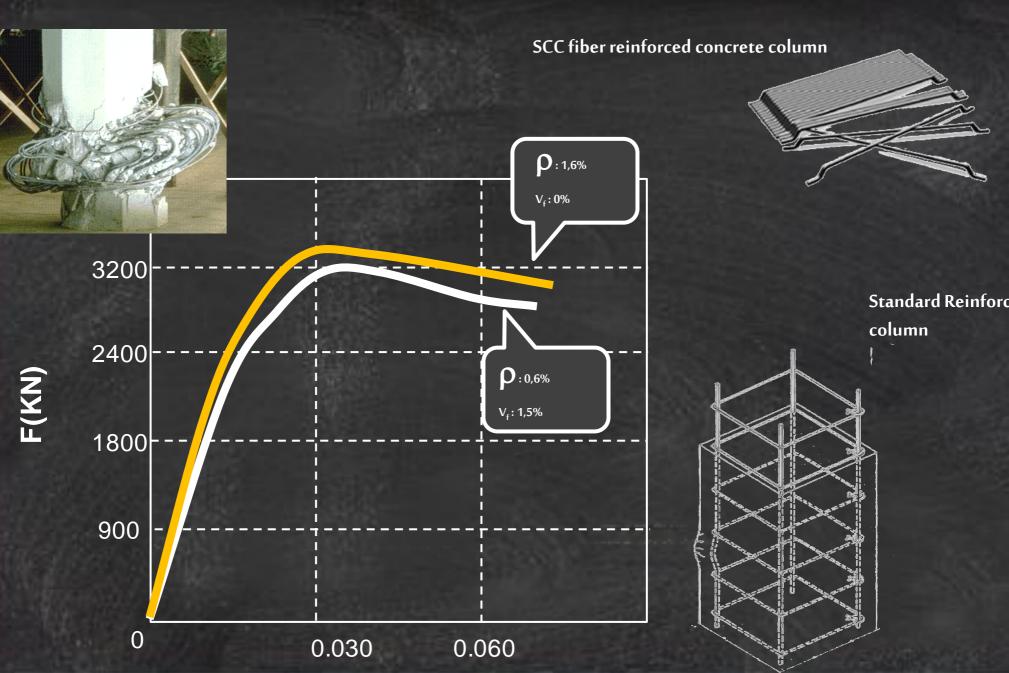
Ecological

Replacement of all reinforcement
Compacting properties

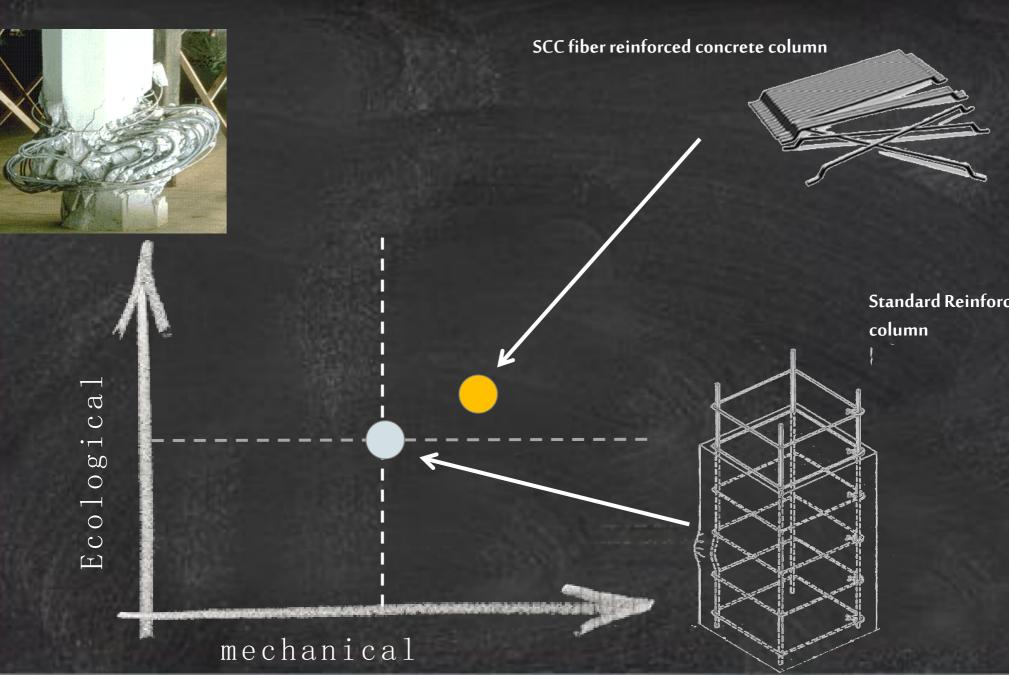
Mechanical

mechanical

Ecological


Conventional concrete

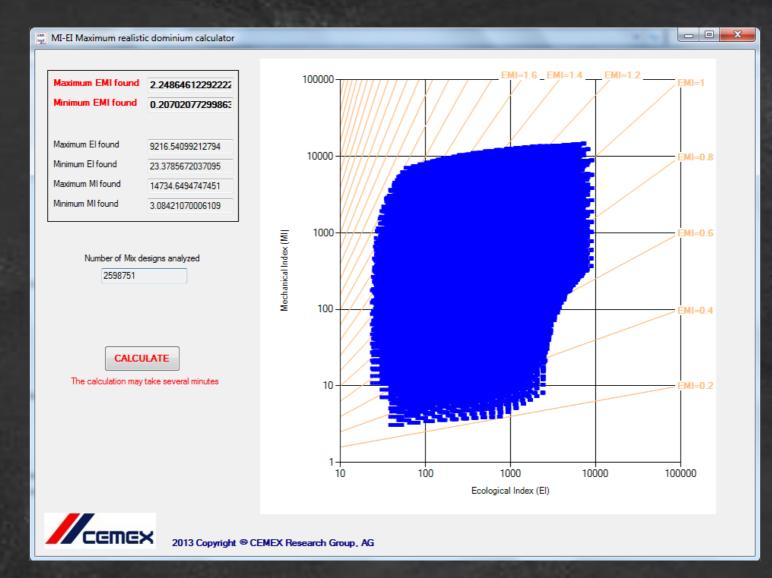
FRC for Slab


Resilia

 \rightarrow

ECO-MECHANICAL Column Design

ECO-MECHANICAL - SUPPORT For ENGINEERS



ECO-MECHANICAL INDEX - concrete design

Name of the mix * Water Proof					10000 EMI=1.2 - EMI					
		——— Mix desig	ın [kg/m3] -]		High performa	nces /////			
BINDERS		FIBERS		FEco -mechanica		1000	// / /		EMI=0.8	
Cement *	350	Steel Fibers	30			_		\square		
Fly ash		Polypropilen Fibers		Ecological Index	633	W.×				EMI=0.6
Silica fume		Glass Fibers		Mechanical Index	193	Index	100			
Carbonate filler				Eco-Mechanical Index	0.816	Mechanical Index (MI)				
		ADMIXTUR	RES			cha				EMI=0.4
AGGREGA	TES	Super plasticizer	1			Me				
Aggregates *	1700	Air entrainer					10	-	-	EMI=0.2
(sand/gravel) Recycled aggregates		Stabilizer		CALCULA	TE					EMI=U.2
(sand/gravel)		Retarder				Low performa	nces			
WATER		Water Proofer		С			1. 10	100	1000	10000
Water *	150	Accelerator	2			Ed	cologically friendly	Ecological	I Index (EI) High	environmental impac
*= to be compulsory fille	ed]						
	-						2			
						1	1.5		Convention	al Concrete
									Hidratium	
						EMI	1		Resilia Eco SCC	
									Insularis	
						L).5		Promptis Water Proof	f
Cem	=×						0			
	- 20	13 Copyright © CEM	EX Research (Group, AG			0 1	2		

On line tool : Calculation and/or Simulation functionality

ECO-MECHANICAL INDEX - the sustainability envelope

Maximum theoretical emiTM based on state of the art simulation

THE STORY

= CONTEXT

- Sustainability Common Understanding
- Concrete Sustainability Until Today
- Novel Concept for Sustainable Construction

■ ECO-MECHANICAL INDEX (emi[™])

- General Idea

Details of Concept

■ emi[™] APPLIED

Product Selection Criterion for Structural Engineers
Structural Column Design
A Materials Design Tool

CONCLUDING REMARKS

CONCLUDING REMARKS

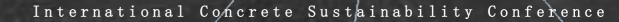
• A novel indicator for sustainability is proposed...

The Eco-Mechanical Index (emi™) not only accounts for environmental impact, but also considers material performance.

- The emiTM has been subjected to an initial validation through its application in an actual sustainable structural design and ready-mix plant products classification.
- Structural/Design Engineers have a means to communicate their needs and select, compare, and specify products/solutions with the optimum criterion for sustainability.
- Powerful means to simulate a variety of product design options, and select the targeted emi[™].

davide.zampini@cemex.com

THANK YOU


ACKNOWLEDGEMENTS

CEMEX Research Group

Alexandre Guerini Giovanni Volpatti Anthony Ponge

Politecnico di Torino

Bernardino Chiaia Alessandro Fantilli

APPROACH Factors involved in the EMI formulation

Parameters	Abbreviation	Importance
Compressive Behavior	СВ	High
Tensile Behavior (through Flexure)	ТВ	High
Ductility of the material	DM	High
Elastic modulus	EM	Medium
Workability	WO	Medium
Durability	DU	Medium
Density	DE	Low
Heat of Hydration	НН	Low
CO ₂ footprint	CO ₂	High
Energy Consumption	EC	High
Waste Reutilization	WR	Medium
Water Utilization	H ₂ 0	High
Energy Efficient Design	EED	Low
Healt	HE	Low
Thermal Transmission	TT	Low
Human Factors and the living/working environment	HF	Low
Safety and security	SS	Low
Local Economical Impact	LEI	Low
Resilience with Climate Changes	RCC	Low