

INSULARIS

SINGLE FAMILY HOUSE THERMAL STUDY IN BOGOTA

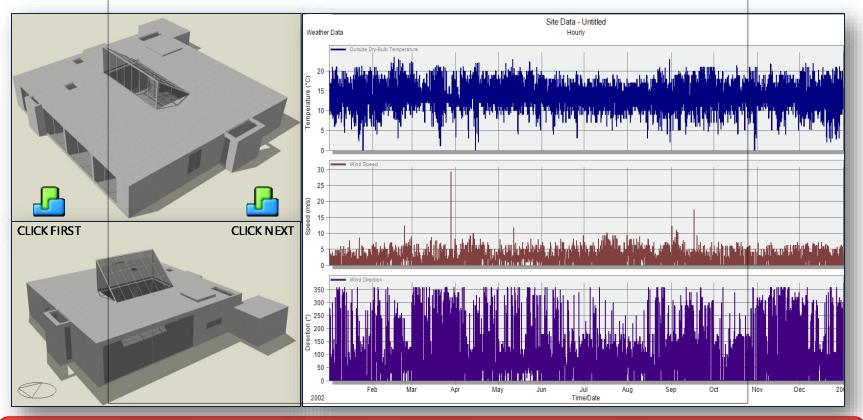
Comfort study – "La Calera House"

Javier García de Andrés Building Science Specialist Building Science & Construction Trends - Switzerland

April 30st 2013

TABLE OF CONTENTS

- 1. Introduction
- 2. Annual Results Baseline
- 3. Insulation strategy I: Insularis Colombia
- 4. Final Report
- 5. Cost analysis


INTRODUCTION

Climatic Zone

This report will study the single family housing building "La calera", use the weather data of La

Calera extracted form Meteonorm and evaluate the thermal comfort along the whole year...

... by means of the software DesignBuilder. In general, La Calera and Bogota's climate is tempered cold along the year. Temperatures fluctuate between 3 and 22 °C.

Climatic Zone


These are the main temperature values and wind flows on site. The average temperature inside the baseline house along the year is 19.6 °C. The architecture of the building shows a ...

	BASELINE	January	February	March	April	May	June	July	August	September	October	November
Extreme external T°	Coldest day	3.2	3.6	5.4	6.3	6.0	5.9	4.8	5.6	3.7	4.7	4.5
Extrem	Hottest day	22.7	22.0	22.2	6.3	21.2	5.9	22.0	20.2	3.7	21.0	4.5
nal T°	Coldest day	14.38	13.84	13.10	14.29	14.40	13.06	13.12	13.32	12.85	13.20	13.67
Extreme internal T°	Average	19.30	19.11	18.94	20.81	18.69	21.64	18.28	18.50	20.58	18.77	21.80
Extre	Hottest day	26.11	25.04	25.26	24.34	24.10	23.74	23.80	24.55	24.98	25.02	24.70
Wind direction and speed	Avrg wind direction	95.77	93.58	88.30	91.19	95.86	93.69	90.16	94.82	91.19	104.68	92.59
Wind d and s	Avrg wind speed (m/s)	2.50	2.59	2.39	2.40	2.29	2.69	2.92	2.80	2.60	2.39	2.30

...charming and personal character but, unfortunately, with a permanent cold thermal feeling. An insulation strategy should be focused to avoid/reduce heating if applied or discomfort hours if not.

Materials Considered in the simulation

We are going to analyze 5 different strategies to show how insulation will significantly increment comfort hours during the year and modify this specific design with higher living standards.

Model Description

The Fanger Comfort model was first published in 1967 and is currently used. Fanger proposes a procedure to evaluate comfort on a 7 points thermal feeling scale...

FANGER								
PMV Below -4	Extremely cold							
PMV between -4 <x<-3< td=""><td>Very cold</td></x<-3<>	Very cold							
PMV between -3 <x<-2< td=""><td>Cold</td></x<-2<>	Cold							
PMV between -2 <x<-1< td=""><td colspan="4">Cool</td></x<-1<>	Cool							
PMV between -1 <x<0< td=""><td>Slightly cool</td></x<0<>	Slightly cool							
PMV between 0 <x<1< td=""><td>Slighty warm</td></x<1<>	Slighty warm							
PMV between 1 <x<2< td=""><td>Warm</td></x<2<>	Warm							
PMV between 2 <x<3< td=""><td>Hot</td></x<3<>	Hot							
PMV between 3 <x<4< td=""><td>Vey Hot</td></x<4<>	Vey Hot							
PMV over 4	Extremely hot							

The Fanger model follows an energy analysis that considers all forms of energy loss of the body:
the convection and radiant heat loss from the outer surface of the clothing,
the heat loss by water vapour diffusion through the skin,
the heat loss by evaporation of sweat from the skin surface,
the latent and dry respiration heat loss
the heat transfer from the skin to the outer surface of the clothing

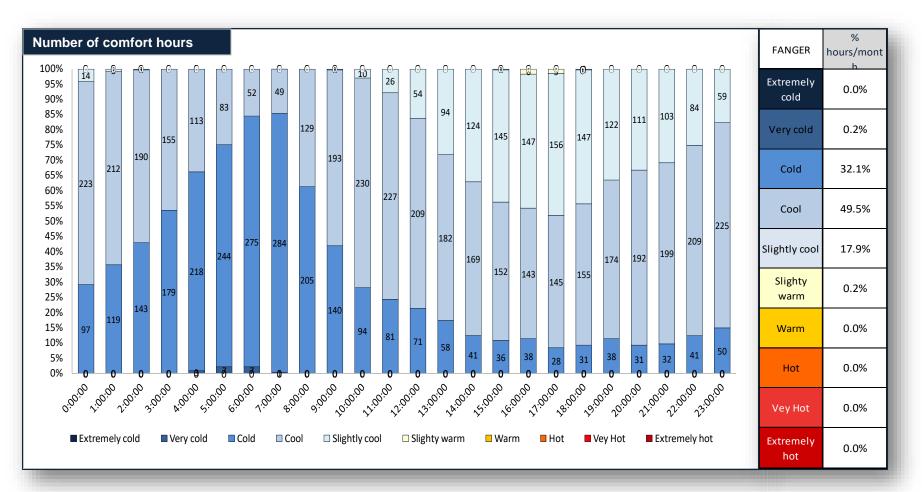
•Fanger conducted a study with volunteers, introducing them to a climatic chamber and inducing them several thermal feelings. Out of the results he established a comfort equation relating a "Predicted Mean Vote" classification from -3 to +3. Although the Fanger model provides just 7 points, Energy + Design Builder allows an unlimited classification.

•Each thermal feeling has an associated:

- •**Operative Temperature :** Average between Air Temperature (Ta) and Mean Radiant Temperature (Tr)
- •Windows openings: Relative air velocity inside the house
- •Clothing factor: as an example 0 would be completely exposed, 0.5 light sports wear, 1 winter wear, 1.5 business suit (maximum value)
- •*Relative Humidity:* How dry or humid the air is.
- •Activity: What kind of activity is happening (static cycling, reading, taking a shower, sleeping...), also affected by the occupancy per m2, the use electronic devices or lights.

... along with numerous human experiments in various environments. He related subjects in response to the variables that influence the condition of thermal comfort.

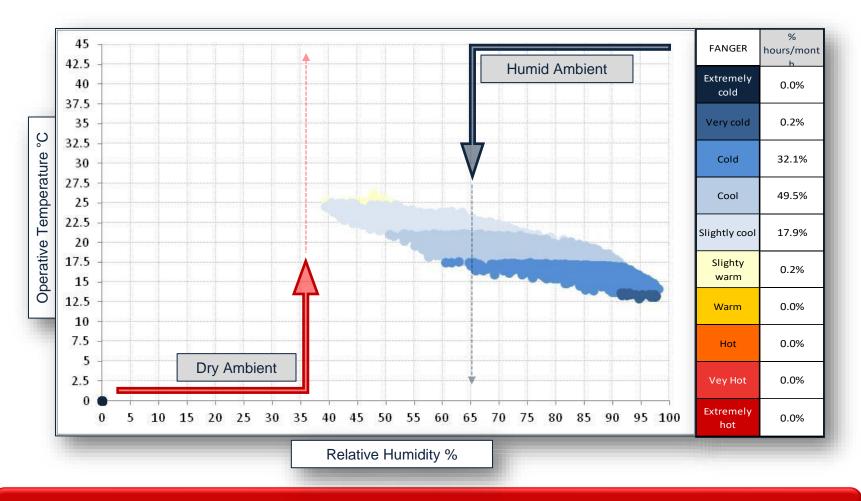
	$ \begin{array}{c} (\text{M-W}) - 3,05 - 10^{-3} \ (5733 - 6,99 \ (\text{M-W}) - p_{a}) - 0,42 \ (\text{M-W}) - 58,15 \ \} \ -1,7 - 10^{-5} \ \text{M} \ (5867 - p_{a}) \ - 0,0014 \ \text{M} \ (34 - t_{a}) \\ = \\ 3,96 - 10^{-8} \ \text{f}_{cl} \ \{(t_{cl} + 273)^{4} - (t_{r} + 273)^{4} \ \} \ - \ \text{f}_{cl} \ \text{h}_{c} \ (t_{cl} - t_{a}) \end{array} $
$-10^{-3} \cdot M(5867 - p_a) - 0,0814$ $t_{cl} = 35,7 - 1,628(M - W) - 0,1551$ $h_c = \begin{cases} 2,38 \ (t_{cl} - t_a)^{0,25} & \text{for } 2,38 \\ 12,1\sqrt{v_{ar}} & \text{for } 2,38(t_a) \end{cases}$	$5(\mathbf{M} - \mathbf{W}) - 3,05 \cdot 10^{-3} [5733 - 406,7(\mathbf{M} - \mathbf{W}) - \mathbf{p_a}] - 24,42[(\mathbf{M} - \mathbf{W}) - 1]$ $PMV = Predicted Mean Vote$ $\mathbf{M} = Metabolism, met (1 met = 58 W/m^2)$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External vork, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met. Equal to zero for most metabolisms$ $\mathbf{M} = External work, met = External work$
BEDICTED N	 The Predicted Mean Vote (PMV) model uses heat balance principles to relate the five key factors for thermal comfort listed previously to the average response of people on the above formulation (the PMV). The PPD (predicted percentage of dissatisfied) index is related to the PMV as defined in the ASHRAE Figure. It is based on the assumption that people voting +2, +3, -2, or -3 on the thermal sensation scale are dissatisfied, and the simplification that PPD is symmetric around a neutral PMV. For the variables that influence the condition of thermal comfort.



ANNUAL RESULTS - BASELINE

Baseline la Calera

Annual Results – Comfort hours



Following the graph an absolute 18.1 % comfort hours are obtained along the whole year, mainly between 1PM and 11 PM. "Chilly" nights are forecasted in the house.

Baseline la Calera

Annual Results – Temperature vs Humidity

5 variables affect comfort- Humidity, T°, Activity, Ventilation and Clothing. Clothing will be the same the whole year (winter wear). Activity thermal loads result from lighting, occupancy & the room's use.

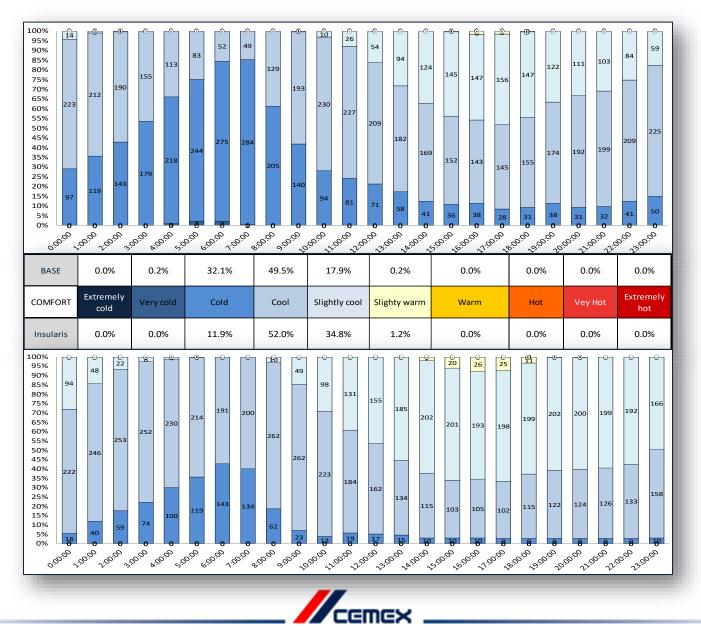
Baseline la Calera

Annual Results – Comfort Report

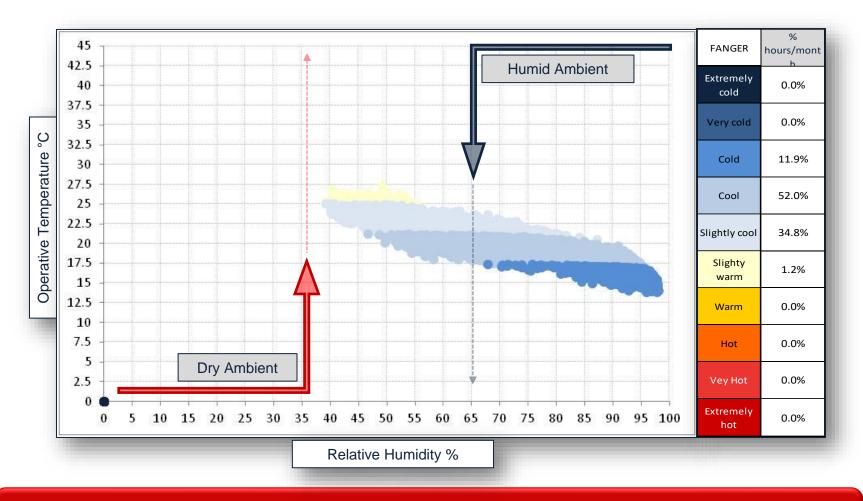
During 77.5% of the year, temperatures inside the house will fluctuate between 13 and 20.4 C°.

		COMFORT REPO	Very cold			Cold			Cool			Slightly cool			Slighty warm			
		% of comfort (Out of 8760 he		0.2%			32.1%			49.5% 4337			17.9%			0.2%		
		TOTAL N° H	lours				2816		1570									
	RATURE	N° Hours		0.0	19.0	2.0	1.0	2550.0	265.0	638.0	3321.0	378.0	180.0	1386.0	4.0	6.0	10.0	0.0
	TEMPERATURE	Temperatur	e MIN	0.0	12.9	13.6	13.6	13.6	17.0	17.0	17.6	20.4	20.4	21.1	24.8	24.8	25.0	0.0
Comfort hours:		Temperature MAX		0.0	13.6	13.6	13.6	17.0	17.6	17.6	20.4	21.1	21.1	24.8	25.0	25.0	26.1	0.0
		% Hours		0%	100%	67%	33%	100%	29%	71%	100%	68%	32%	100%	40%	60%	100%	#DIV/0!
18.1%		LOW Use	% Time	0%			9%			19%			31%			50%		
	ACTIVIT	Mid term USE % Time			100%			66%			45%			41%			50%	
		Intensive USE	% Time	0%			25%			36%			29%			0%		
	/S	CLOSED	% Time	100%		100%		100%		51%			0%					
	WINDOWS	HALF OPEN	% Time	0%			0%			0%			19%			0%		
	3	Full OPEN	% Time	0%				0%		0%			30%			100%		

It is up to the client's judgment to select the range of the comfort scale he would like to enjoy, and CEMEX responsibility to satisfy him by offering constructive solutions that fits all the requirements.



INSULATION STRATEGY I


Insulation Strategy I

Annual Results – Comfort hours

Insulation Strategy I

Annual Results – Temperature vs Humidity

Results show a 36% of the total hours falling into the Slightly cool/warm, generally stated as "comfortable parameters" with a high degree of acceptance among the house users.

Insulation Strategy I

Annual Results – Comfort Report

During 88 % of the year, temperatures inside the house will fluctuate between 17 and 27.3 C°.

		COMFORT REPORT			Cold		Cool			S	lightly coo	bl	Slighty warm		
		% of comfo (Out of 8760 I		11.9%		52.0%			34.8%			1.2%			
	TEMPERATURE	TOTAL N°	1044			4559			3048			109			
		N° Hours Temperature MIN Temperature MAX % Hours		0.0	934.0	110.0	292.0	3913.0	354.0	0 319.0	2709.0	20.0	23.0	86.0	0.0
	TEMPE			0.0	13.8	16.9	16.9	17.4	20.5	20.5	21.2	24.8	24.8	25.1	0.0
Comfort hours:				0.0	16.9	17.4	17.4	20.5	21.2	21.2	24.8	25.1	25.1	27.3	0.0
36%				-	100%	27%	73%	100%	53%	47%	100%	47%	53%	100%	-
50 %	×	LOW Use	% Time	7%			13%			27%			49%		
	ACTIVITY	Mid term USE	% Time	77%			54%			37%			50%		
		Intensive USE	% Time 16%			32%			35%			1%			
	SV	CLOSED	% Time	100%			99%			41%			0%		
	WINDOWS	HALF OPEN	% Time	0%			1%			30%			0%		
	3	Full OPEN	% Time	% Time 0%			0%			29%			100%		

Along the whole year, the number of comfort hours are raised by a factor 2 compared with the Baseline house (18.1%). In other words, an extra 17.9% of total comfort is obtained with this strategy.

FINAL REPORT

Final Report

Annual Results Table

Annual summary									
Strategies Summary	Baseline	Insularis Colombia							
Extremely cold	0.0%	0.0%							
Very cold	0.2%	0.0%							
Cold	32.1%	11.9%							
Cool	49.5%	52.0%							
Slightly cool	17.9%	34.8%							
Slighty warm	0.2%	1.2%							
Warm	0.0%	0.0%							
Hot	0.0%	0.0%							
Vey Hot	0.0%	0.0%							
Extremely hot	0.0%	0.0%							
% TOTAL COMFORT HOURS	18.1%	36.0%							

Insularis Concrete

Characteristics of Design

Foundation and Top Slab:

- Compressive Strength: 210 Kg/cm2
- Slump: 13 cm +/- 2.5 cm
- Aggregates Maximum Size: 12.5 mm
- A/C ratio : 0.36
- Density of concrete: 1677 kg/m3
- Walls, beams and columns Architectural Insularis Hidratium White Cream
 - Compressive strength: 210 kg/cm2
 - Slump:18 cm +/- 2.5 cm
 - White Cement Type III
 - Aggregates Maximum Size: 12.5 mm
 - Density of concrete: 1734 kg/m3

Insularis Concrete

- Conventional building system with walls, beams, columns and slabs. All are Insularis concrete.
- The thickness of the walls is 10 cm. In some cases there is a layer of Insularis Concrete of 10 cm, then a polystyrene of 5 cm and finally a layer of 8 cm of Insularis Concrete. The top slab has a thickness of 15 cm.
- For architectural concrete, it used a plastic formwork with no texture.
- Specifically contemplated the use of a retarder admixture due to prolonged transport time (3 hours) and placement (1 hour).
- Concrete compaction was performed with rod and tapping with rubber hammer.

